Step of Proof: member_nth_tl
11,40
postcript
pdf
Inference at
*
2
2
2
1
I
of proof for Lemma
member
nth
tl
:
1.
T
: Type
2.
n
:
3. 0 <
n
4.
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
- 1;
L
))
(
x
L
)
5.
x
:
T
6.
T
List
7.
u
:
T
8.
v
:
T
List
9. (
x
nth_tl(
n
;
v
))
(
x
v
)
10. 0 <
n
11. (
x
nth_tl(
n
- 1;
v
))
(
x
[
u
/
v
])
latex
by ((RWO "cons_member" 0)
CollapseTHEN (Auto
))
latex
C
1
:
C1:
(
x
=
u
)
(
x
v
)
C
.
Definitions
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
t
T
,
P
Q
,
type
List
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
a
<
b
,
,
Type
,
P
Q
,
left
+
right
,
s
=
t
,
(
x
l
)
Lemmas
cons
member
,
l
member
wf
origin